Advent of Code 2022 Day 17
Day 17: Pyroclastic Flow
https://adventofcode.com/2022/day/17
You enter a tall, narrow chamber. Rocks start falling.
For some reason, there’s a loud song playing in this room. Very mysterious stuff! I don’t mind, it’s a bop.
The falling rocks have these shapes, where #
is rock and .
is air:
####.#.###.#...#..############
The “pieces” fall in that order, wrapping when the end of that list of 5 pieces is reached.
Jets of steam push around the rocks as they fall.
Today’s puzzle input is the sequence of directions the pieces will be pushed in.
An example input looks like this:
>>><<><>><<<>><>>><<<>>><<<><<<>><>><<>>
<
means a jet of air that blows a piece left>
means a jet of air that blows a piece right
As with the pieces, if the end of the list is reached, it repeats.
The chamber is exactly seven units wide.
Each piece appears so that its left edge is two units away from the left wall and its bottom edge is three units above the highest rock in the room (or the floor, if there isn’t one).
After a piece appears, it alternates between being pushed by a jet of hot gas one unit and falling down one unit. If a movement would cause the piece to move into the walls, the floor, or an other piece, that movement doesn’t happen. When a piece is prevented from falling, a new piece immediately begins falling.
Parsing
The jets are an instance of a Jet
enum that’s Left
or Right
.
The input is a list of them.
enum Jet {Left,Right,}fn parse(input: &str) -> Vec<Jet> {input.trim().chars().map(|c| match c {'<' => Jet::Left,'>' => Jet::Right,_ => panic!("invalid input, {}", c),}).collect()}
I’m also counting getting those pieces into useful data structure as parsing today. Oh, and I’m also storing the width of the chamber in a constant.
I chose to represent the pieces as a series of point offsets to a point.
Point? You know what that means, Coord
is back for an other appearance!
Each Coord
offset represents a rock in the piece.
#[derive(Debug, PartialEq, Default)]struct Coord {x: usize,// positive y goes up.// happy mathematicians, sad game programmersy: usize,}const WIDTH: usize = 7;const PIECES: [&[Coord]; 5] = [// horizontal line&[Coord { x: 0, y: 0 },Coord { x: 1, y: 0 },Coord { x: 2, y: 0 },Coord { x: 3, y: 0 },],// plus&[Coord { x: 0, y: 1 },Coord { x: 1, y: 0 },Coord { x: 1, y: 1 },Coord { x: 1, y: 2 },Coord { x: 2, y: 1 },],// J (or backwards L)&[Coord { x: 0, y: 0 },Coord { x: 1, y: 0 },Coord { x: 2, y: 0 },Coord { x: 2, y: 1 },Coord { x: 2, y: 2 },],// vertical line&[Coord { x: 0, y: 0 },Coord { x: 0, y: 1 },Coord { x: 0, y: 2 },Coord { x: 0, y: 3 },],// square&[Coord { x: 0, y: 0 },Coord { x: 1, y: 0 },Coord { x: 0, y: 1 },Coord { x: 1, y: 1 },],];
Part 1
The question asks how tall the tower of rocks will be when 2022 pieces stopped falling.
The instructions in pseudocode:
let jets = parse(input);let mut pieces_count = 0;let mut top = 0;while pieces_count != 2022 {// choose new piece to start dropping// set current coordinate all offsets in a piece are related to as x: 2, y: top + 3loop {// get new jet direction// apply jet (update current coordinate if successful)// try to fall (update current coordinate if successful)// if not successful: break out of loop}// settle the current piece, add all offsets to the map of settled pieces// update the highest rock coordinate and store it in "top"pieces_count += 1;}top
I grouped a couple of variables to keep track of the state of the chamber in a struct:
#[derive(Default)]struct State {jet_count: usize,piece_count: usize,top: usize,map: Vec<[bool; WIDTH]>,curr: Coord,}
At the start of the simulation, every number starts at 0, and the map is empty.
jet_count
is a number to keep track of how many jets in total have blown.piece_count
is a number to keep track of how many pieces in total have started falling.top
is a number to keep track of how tall the tower currently ismap
is a list of 7 wide boolean arrays, each keeping track of where settled rocks are at that height.curr
is the coordinate pair where the offsets of a piece will apply to in order to figure out where the rocks of a piece are.
When a piece stops falling, it is added to the map
list.
Helpers
A helper to determine given a new curr
coordinate, if the state using that as curr
would be valid.
impl State {fn is_valid(&mut self, new_curr: &Coord, piece: &[Coord]) -> bool {piece.iter().all(|offset| {let x = new_curr.x + offset.x;let y = new_curr.y + offset.y;while self.map.len() <= y {self.map.push([false; WIDTH]);}x < WIDTH && !self.map[y][x]})}}
The only wall collision that is checked is the one with the right wall.
This is because a Coord
has fields that can only ever be 0 or greater
Collisions with other pieces are checked by indexing into map
and seeing if a rock is there.
Because this was a finnicky problem to get right, I implemented Display
so I could print out the state of the chamber.
This takes the list of booleans in map
and turns them into:
#
fortrue
.
forfalse
It then creates empty rows to fit the current piece if necessary.
For every offset in the current piece, it adds a @
to that map.
That map is then printed to the screen with |
on the sides or each row.
And at the bottom, a +-----+
, just like the examples in the question!
That way, in the solution code I can pop in a println!("{}", state);
and see the same output as in the question text.
This was an awesome tool for finding off by one errors (and there were a lot of those)
impl Display for State {fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {let piece = PIECES[self.piece_count % PIECES.len()];let mut print: Vec<Vec<_>> = self.map.iter().map(|row| {row.iter().map(|rock| if *rock { '#' } else { '.' }).collect()}).collect();let mut local_top = self.top;for offset in piece {let x = self.curr.x + offset.x;let y = self.curr.y + offset.y;while print.len() <= y {print.push(vec!['.'; WIDTH]);}print[y][x] = '@';local_top = local_top.max(y + 1);}for row in (0..local_top).rev() {let mut row_str = String::from('|');for col in 0..7 {row_str.push(print[row][col]);}row_str.push('|');row_str.push('\n');write!(f, "{}", row_str)?;}writeln!(f, "+{}+", "-".repeat(WIDTH))}}
The code for part1 has the locations where that printing of the state is used commented out.
Final code
pub fn part_1(input: &str) -> usize {let target = 2022;let jets = parse(input);let mut state = State::default();while state.piece_count != target {// new piece starts fallinglet piece = PIECES[state.piece_count % PIECES.len()];state.curr.x = 2;state.curr.y = state.top + 3;// println!("== Piece {} begins falling ==", state.piece_count + 1);// println!("{}", state);loop {// jetlet jet = &jets[state.jet_count % jets.len()];let new_curr = match jet {Jet::Left => Coord {x: state.curr.x.saturating_sub(1),y: state.curr.y,},Jet::Right => Coord {x: state.curr.x + 1,y: state.curr.y,},};if state.is_valid(&new_curr, piece) {state.curr = new_curr;}state.jet_count += 1;// println!(// "Jet of gas pushes piece {}:",// match jet {// Jet::Left => "left",// Jet::Right => "right",// }// );// println!("{}", state);// falllet new_curr = Coord {x: state.curr.x,y: state.curr.y.saturating_sub(1),};if state.curr.y == 0 || !state.is_valid(&new_curr, piece) {break;}state.curr = new_curr;// println!("Piece falls 1 unit:");// println!("{}", state);}// settlefor offset in piece {let x = state.curr.x + offset.x;let y = state.curr.y + offset.y;while state.map.len() <= y {state.map.push([false; WIDTH]);}state.map[y][x] = true;// y is 0 indexed.state.top = state.top.max(y + 1);}// prepare for next iteration of while loopstate.piece_count += 1;}state.top}
Part 2
The elephants with you are not impressed.
They would like to know how tall the tower will be after 1000000000000
pieces have stopped.
That’s a lot of zeros. A trillion rocks! Must be quite a high chamber, eh?
The question asks how tall the tower of rocks will be when 1000000000000
pieces stopped falling.
Changing the 2022
to a trillion in the code above would provide a correct answer.
The only question is, am I willing to wait the time it takes to complete?
The answer is no. Luckily, there is a pattern in the dropped rocks that repeats.
Part 2 is about finding that repetition and fast forwarding as close to that trillion as possible.
To help with that, a few extra fields for the State
struct:
#[derive(Default)]struct State {jet_count: usize,piece_count: usize,top: usize,map: Vec<[bool; WIDTH]>,curr: Coord,seen: HashMap<(usize, usize), (usize, usize, usize)>,added_by_repeats: usize,}
A seen
key is a combination of the index into PIECES
and the index into jets
.
A cycle can only be detected the third time we encounter such a pair though.
This is because some of the first pieces will have hit the floor.
By the time a combination of pieces_idx, jets_idx
comes around again, the fallen blocks only interact with other blocks when falling.
That is the first repeatable cycle.
The seen
values are:
- A counter of how many times a key was seen
- The
pieces_count
at that time - The
top
at that time
Using those 2 last pieces of information, the difference in top
between now and the previous time we encountered a (pieces_idx, jet_idx)
pair can be calculated.
We fast forward as much times as we can without hitting the trillion.
The increase in top
that would have caused is stored in amount_added
.
The remaining amount to the trillion is simulated as before.
Final code
pub fn part_2(input: &str) -> usize {let target = 1_000_000_000_000;let jets = parse(input);let mut state = State::default();while state.piece_count != target {// new piece starts fallinglet piece = PIECES[state.piece_count % PIECES.len()];state.curr.x = 2;state.curr.y = state.top + 3;loop {// jetlet jet = &jets[state.jet_count % jets.len()];let new_curr = match jet {Jet::Left => Coord {x: state.curr.x.saturating_sub(1),y: state.curr.y,},Jet::Right => Coord {x: state.curr.x + 1,y: state.curr.y,},};if state.is_valid(&new_curr, piece) {state.curr = new_curr;}state.jet_count += 1;// falllet new_curr = Coord {x: state.curr.x,y: state.curr.y.saturating_sub(1),};if state.curr.y == 0 || !state.is_valid(&new_curr, piece) {break;}state.curr = new_curr;}// settlefor offset in piece {let x = state.curr.x + offset.x;let y = state.curr.y + offset.y;while state.map.len() <= y {state.map.push([false; WIDTH]);}state.map[y][x] = true;// y is 0 indexedstate.top = state.top.max(y + 1);}// look for cycleif state.added_by_repeats == 0 {let key = (state.piece_count % PIECES.len(),state.jet_count % jets.len(),);// at third occurrence of key, the values in the seen map repeat// add as many of them as possible without hitting the goal piece_countif let Some((2, old_piece_count, old_top)) = state.seen.get(&key) {let delta_top = state.top - old_top;let delta_piece_count = state.piece_count - old_piece_count;let repeats = (target - state.piece_count) / delta_piece_count;state.added_by_repeats += repeats * delta_top;state.piece_count += repeats * delta_piece_count;}// update seen map// key: (piece_count % PIECES.len(), jet_count % jets.len())// value: (amount_of_times_key_was_seen, piece_count, top)state.seen.entry(key).and_modify(|(amnt, old_piece_count, old_top)| {*amnt += 1;*old_piece_count = state.piece_count;*old_top = state.top;}).or_insert((1, state.piece_count, state.top));}// prepare for next iteration of while loopstate.piece_count += 1;}state.top + state.added_by_repeats}
I then made a method with that logic to reuse it between part 1 and part 2.
Final code
1use std::{collections::HashMap, fmt::Display};23const WIDTH: usize = 7;4const PIECES: [&[Coord]; 5] = [5 // horizontal line6 &[7 Coord { x: 0, y: 0 },8 Coord { x: 1, y: 0 },9 Coord { x: 2, y: 0 },10 Coord { x: 3, y: 0 },11 ],12 // plus13 &[14 Coord { x: 0, y: 1 },15 Coord { x: 1, y: 0 },16 Coord { x: 1, y: 1 },17 Coord { x: 1, y: 2 },18 Coord { x: 2, y: 1 },19 ],20 // J (or backwards L)21 &[22 Coord { x: 0, y: 0 },23 Coord { x: 1, y: 0 },24 Coord { x: 2, y: 0 },25 Coord { x: 2, y: 1 },26 Coord { x: 2, y: 2 },27 ],28 // vertical line29 &[30 Coord { x: 0, y: 0 },31 Coord { x: 0, y: 1 },32 Coord { x: 0, y: 2 },33 Coord { x: 0, y: 3 },34 ],35 // square36 &[37 Coord { x: 0, y: 0 },38 Coord { x: 1, y: 0 },39 Coord { x: 0, y: 1 },40 Coord { x: 1, y: 1 },41 ],42];4344enum Jet {45 Left,46 Right,47}4849#[derive(Debug, PartialEq, Default)]50struct Coord {51 x: usize,52 // positive y goes up.53 // happy mathematicians, sad game programmers54 y: usize,55}5657#[derive(Default)]58struct State {59 jet_count: usize,60 piece_count: usize,61 top: usize,62 map: Vec<[bool; WIDTH]>,63 curr: Coord,64 added_by_repeats: usize,65 seen: HashMap<(usize, usize), (usize, usize, usize)>,66}6768impl State {69 fn is_valid(&mut self, new_curr: &Coord, piece: &[Coord]) -> bool {70 piece.iter().all(|offset| {71 let x = new_curr.x + offset.x;72 let y = new_curr.y + offset.y;73 while self.map.len() <= y {74 self.map.push([false; WIDTH]);75 }76 x < WIDTH && !self.map[y][x]77 })78 }7980 fn simulate(&mut self, target: usize, jets: Vec<Jet>) {81 while self.piece_count != target {82 // new piece starts falling83 let piece = PIECES[self.piece_count % PIECES.len()];84 self.curr.x = 2;85 self.curr.y = self.top + 3;8687 // println!("== Piece {} begins falling ==", state.piece_count + 1);88 // println!("{}", state);8990 loop {91 // jet92 let jet = &jets[self.jet_count % jets.len()];93 let new_curr = match jet {94 Jet::Left => Coord {95 x: self.curr.x.saturating_sub(1),96 y: self.curr.y,97 },98 Jet::Right => Coord {99 x: self.curr.x + 1,100 y: self.curr.y,101 },102 };103 if self.is_valid(&new_curr, piece) {104 self.curr = new_curr;105 }106 self.jet_count += 1;107108 // println!(109 // "Jet of gas pushes piece {}:",110 // match jet {111 // Jet::Left => "left",112 // Jet::Right => "right",113 // }114 // );115 // println!("{}", state);116117 // fall118 let new_curr = Coord {119 x: self.curr.x,120 y: self.curr.y.saturating_sub(1),121 };122 if self.curr.y == 0 || !self.is_valid(&new_curr, piece) {123 break;124 }125 self.curr = new_curr;126127 // println!("Piece falls 1 unit:");128 // println!("{}", state);129 }130131 // settle132 for offset in piece {133 let x = self.curr.x + offset.x;134 let y = self.curr.y + offset.y;135 while self.map.len() <= y {136 self.map.push([false; WIDTH]);137 }138 self.map[y][x] = true;139 // y is 0 indexed140 self.top = self.top.max(y + 1);141 }142143 // look for cycle144 if self.added_by_repeats == 0 {145 let key = (self.piece_count % PIECES.len(), self.jet_count % jets.len());146 // at third occurrence of key, the values in the seen map repeat147 // add as many of them as possible without hitting the goal piece_count148 if let Some((2, old_piece_count, old_top)) = self.seen.get(&key) {149 let delta_top = self.top - old_top;150 let delta_piece_count = self.piece_count - old_piece_count;151 let repeats = (target - self.piece_count) / delta_piece_count;152 self.added_by_repeats += repeats * delta_top;153 self.piece_count += repeats * delta_piece_count;154 }155 // update seen map156 // key: (piece_count % PIECES.len(), jet_count % jets.len())157 // value: (amount_of_times_key_was_seen, piece_count, top)158 self.seen159 .entry(key)160 .and_modify(|(amnt, old_piece_count, old_top)| {161 *amnt += 1;162 *old_piece_count = self.piece_count;163 *old_top = self.top;164 })165 .or_insert((1, self.piece_count, self.top));166 }167168 // prepare for next iteration of while loop169 self.piece_count += 1;170 }171 }172}173174impl Display for State {175 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {176 let piece = PIECES[self.piece_count % PIECES.len()];177 let mut print: Vec<Vec<_>> = self178 .map179 .iter()180 .map(|row| {181 row.iter()182 .map(|rock| if *rock { '#' } else { '.' })183 .collect()184 })185 .collect();186 let mut local_top = self.top;187 for offset in piece {188 let x = self.curr.x + offset.x;189 let y = self.curr.y + offset.y;190 while print.len() <= y {191 print.push(vec!['.'; WIDTH]);192 }193 print[y][x] = '@';194 local_top = local_top.max(y + 1);195 }196 for row in (0..local_top).rev() {197 let mut row_str = String::from('|');198 for col in 0..7 {199 row_str.push(print[row][col]);200 }201 row_str.push('|');202 row_str.push('\n');203 write!(f, "{}", row_str)?;204 }205 writeln!(f, "+{}+", "-".repeat(WIDTH))206 }207}208209fn parse(input: &str) -> Vec<Jet> {210 input211 .trim()212 .chars()213 .map(|c| match c {214 '<' => Jet::Left,215 '>' => Jet::Right,216 _ => panic!("invalid input, {}", c),217 })218 .collect()219}220221pub fn part_1(input: &str) -> usize {222 let target = 2022;223 let jets = parse(input);224 let mut state = State::default();225 state.simulate(target, jets);226227 state.top + state.added_by_repeats228}229230pub fn part_2(input: &str) -> usize {231 let target = 1_000_000_000_000;232 let jets = parse(input);233 let mut state = State::default();234 state.simulate(target, jets);235236 state.top + state.added_by_repeats237}
Series navigation for: Advent of Code 2022