Metadata
-
Date
-
Tagged
-
Part of series
- Advent of Code 2022 Day 1
- Advent of Code 2022 Day 2
- Advent of Code 2022 Day 3
- Advent of Code 2022 Day 4
- Advent of Code 2022 Day 5
- Advent of Code 2022 Day 6
- Advent of Code 2022 Day 7
- Advent of Code 2022 Day 8
- Advent of Code 2022 Day 9
- Advent of Code 2022 Day 10
- Advent of Code 2022 Day 11
- Advent of Code 2022 Day 12
- Advent of Code 2022 Day 13
- Advent of Code 2022 Day 14
- Advent of Code 2022 Day 15
- Advent of Code 2022 Day 16
- Advent of Code 2022 Day 17
- Advent of Code 2022 Day 18
- Advent of Code 2022 Day 19
- Advent of Code 2022 Day 20
- Advent of Code 2022 Day 21
- Advent of Code 2022 Day 22
- Advent of Code 2022 Day 23
- Advent of Code 2022 Day 24
- Advent of Code 2022 Day 25
-
Older post
-
Newer post
Advent of Code 2022 Day 22
Day 22: Monkey Map
https://adventofcode.com/2022/day/22
The monkeys take you through the jungle on the way to the grove.
You have to enter a password to get it.
That password can be found be following a specific path through a maze.
The first half of today’s input is the maze. Where ”.” is an open space, and ”#” is a solid wall. The maze is strangely shaped, so there are a bunch of spaces in the input.
The second part of the input is a list of instructions.
- Numbers mean “move X steps forward”.
- “L” means turn 90 degrees left
- “R” means turn 90 degrees right
An example input looks like this:
...# .#.. #... .......#.......#........#.....#....#..............#. ...#.... .....#.. .#...... ......#.
10R5L5R10L4R5L5
- You start the maze at first open tile on the top row.
- You start facing to the right
So the first instruction tells you to take 10 steps on the map in the right direction.
- If an instructions tells you to walk into a wall, stop instead.
- If an instruction sends you off an edge, appear at the opposite one.
The password can be constructed using the final row, column, and direction you are facing.
- Rows start from 1 at the top and count downward
- Columns start from 1 at the left and count rightward.
- Facing scores are:
- 0 for right
- 1 for down
- 2 for left
- 3 for up
The password is 1000 * row + 4 * column + facing.
Parsing
An instruction is an enum that’s either a rotation or a movement.
enum Instruction { Rotate(Turn), Forward(u8),}
enum Turn { L, R,}
I parsed the maze as a list of lists. Where items in the outer list are rows. Items in the rows are a tile or an empty space (because of the weird shape of the maze).
The tiles in the map are either open or solid. Because the maze has such a weird shape, I included the spaces where there isn’t anything too. You could also do this by associating a coordinate to each tile in the maze.
enum Tile { Open, Solid, None,}
fn parse(input: &str) -> (Vec<Vec<Tile>>, Vec<Instruction>) { // do NOT remove starting whitespace, it's significant let (grid, moves) = input.trim_end().split_once("\n\n").unwrap(); let mut instructions = Vec::new(); let mut digits = Vec::new(); for c in moves.chars() { if c.is_numeric() { // accumulate digits let digit = c.to_digit(10).unwrap() as u8; digits.push(digit); } else { // construct number out of digits // uses math to concatenate digits instead of turning them into a string first and parsing the string let num = digits.iter().fold(0, |num, digit| num * 10 + digit); digits.clear(); instructions.push(Instruction::Forward(num));
// parse turn let turn = match c { 'L' => Turn::L, 'R' => Turn::R, _ => panic!("Invalid input"), }; instructions.push(Instruction::Rotate(turn)); } } // construct number out of any remaining digits // uses math to concatenate digits instead of turning them into a string first and parsing the string let num = digits.iter().fold(0, |num, digit| num * 10 + digit); instructions.push(Instruction::Forward(num));
let mut map = Vec::new(); for line in grid.lines() { let mut row = Vec::new(); for c in line.chars() { let tile = match c { '.' => Tile::Open, '#' => Tile::Solid, ' ' => Tile::None, _ => panic!("invalid input"), }; row.push(tile); } map.push(row); }
(map, instructions)}
Part 1
The question asks what the final password is.
If an instruction sends you off the right side of the map, appear left. Same rule for left to right, up to down, and down to up.
It’s possible there is a wall just off the edge of the maze. And you should stop when you encounter a wall.
The question text has a bunch of visual examples that are useful.
Helpers
You better believe I pulled out the Coord
struct again to represent a position.
#[derive(Clone)]struct Coord { row: i32, col: i32,}
The direction you’re facing also gets a data type. Along with a few methods on it.
score
helps with the scoring logic described aboveturn
takes in a direction, and applies a left or right turnoffset
returns what a step in the current direction would do to the current coordinates on the map.
enum Direction { L, R, U, D,}
impl Direction { fn score(&self) -> usize { use Direction::*; match self { R => 0, D => 1, L => 2, U => 3, } }
fn turn(self, turn: &Turn) -> Direction { use Direction::*; match (self, turn) { (L, Turn::L) => D, (L, Turn::R) => U, (R, Turn::L) => U, (R, Turn::R) => D, (U, Turn::L) => L, (U, Turn::R) => R, (D, Turn::L) => R, (D, Turn::R) => L, } }
fn offset(&self) -> Coord { use Direction::*; match &self { L => Coord { row: 0, col: -1 }, R => Coord { row: 0, col: 1 }, U => Coord { row: -1, col: 0 }, D => Coord { row: 1, col: 0 }, } }}
In a pseudocode/skeletoncode hybrid, this is what I wrote:
let mut post = // first open position on the top rowlet mut dir = Direction::R;
for ins in instruction { match ins { // if rotation, turn // if movement for amount in 0..movement_amount { let new_pos = // try to move 1 step let new_tile = // try to get new tile if new_tile was found { match new_tile { Tile::Open => // apply move, Tile::Solid => // don't move and break out of loop } } else { // wrap around let wrapped_pos = // pos after moving 1 let wrapped_tile = // get wrapped tile match wrapped_tile { Tile::Open => // apply move, Tile::Solid => // don't move and break out of loop } } } }}
A helper function that handles the wrapping logic:
fn wrap(map: &[Vec<Tile>], pos: &Coord, dir: &Direction) -> Coord { let Coord { row: dr, col: dc } = dir.offset(); let mut curr = pos.clone(); // while an open or solid tile exists in the map when walking in the opposite direction, update pos while let Some(tile) = map .get((curr.row - dr) as usize) .and_then(|row| row.get((curr.col - dc) as usize)) { if *tile == Tile::None { break; } curr = Coord { row: curr.row - dr, col: curr.col - dc, }; }
curr}
Final code
pub fn part_1(input: &str) -> i32 { let (map, instructions) = parse(input); // go to the first open position on the top row (skip the Nones) let start_col = map[0].iter().position(|tile| *tile == Tile::Open).unwrap() as i32;
let mut pos = Coord { row: 0, col: start_col, }; let mut dir = Direction::R;
for inst in &instructions { match inst { Instruction::Rotate(turn) => dir = dir.turn(turn), Instruction::Forward(amount) => { // take a step "amount" times for _ in 0..*amount { let Coord { row: dr, col: dc } = dir.offset(); let new_tile = map .get((pos.row + dr) as usize) .and_then(|row| row.get((pos.col + dc) as usize)) .unwrap_or(&Tile::None);
match new_tile { // if new tile is solid, stop moving Tile::Solid => break, // if new tile is open, move there Tile::Open => { pos = Coord { row: pos.row + dr, col: pos.col + dc, }; } // if new tile is not found, wrap around Tile::None => { let new_pos = wrap(&map, &pos, &dir); // if the new_pos is solid, stop moving if map[new_pos.row as usize][new_pos.col as usize] == Tile::Solid { break; } // if the new_pos is open, move there pos = new_pos; } } } } } }
1000 * (pos.row + 1) + 4 * (pos.col + 1) + dir.score() as i32}
Part 2
The maze isn’t flat, it’s a very large cube. Each side is 50 tiles long.
So, that’s what that weird shape was about. The input “folds” into a cube shape.
The wrapping rules are different now. You continue along the cube instead.
Again, the question text has a few useful examples.
// example cube ...# .#.. #... .......#.......#........#..A..#....#.....D........#. ...#..B. .....#.. .#...... ..C...#.
2 example movements around the cube:
- you are at A and move to the right, you arrive at B facing down
- you are at C and move down, you arrive at D facing up:
The question asks what the final password is.
The code for part2 is very similar again. The part in the logic where we apply the wrapping logic is now different.
A step to a different cube face also changes the direction you are facing! So if we take a step, we not only update the current coordinate, but also the facing direction.
Helpers
The helper that handles the wrapping logic got way more complicated.
fn wrap(pos: &Coord, dir: &Direction) -> (Coord, Direction) { // find idxes of entire cube // this huge match statement only covers cases in the real input, but can be expanded to cover everything. It's just tedious let (cube_row, cube_col, new_dir) = match (pos.row / 50, pos.col / 50, dir) { (0, 1, Direction::U) => (3, 0, Direction::R), (0, 1, Direction::L) => (2, 0, Direction::R), (0, 2, Direction::U) => (3, 0, Direction::U), (0, 2, Direction::R) => (2, 1, Direction::L), (0, 2, Direction::D) => (1, 1, Direction::L), (1, 1, Direction::R) => (0, 2, Direction::U), (1, 1, Direction::L) => (2, 0, Direction::D), (2, 0, Direction::U) => (1, 1, Direction::R), (2, 0, Direction::L) => (0, 1, Direction::R), (2, 1, Direction::R) => (0, 2, Direction::L), (2, 1, Direction::D) => (3, 0, Direction::L), (3, 0, Direction::R) => (2, 1, Direction::U), (3, 0, Direction::D) => (0, 2, Direction::D), (3, 0, Direction::L) => (0, 1, Direction::D), _ => unreachable!(), }; // find idxes within the cube let (row_idx, col_idx) = (pos.row % 50, pos.col % 50);
let i = match dir { Direction::L => 49 - row_idx, Direction::R => row_idx, Direction::U => col_idx, Direction::D => 49 - col_idx, };
// find new idxes within the cube let new_row = match new_dir { Direction::L => 49 - i, Direction::R => i, Direction::U => 49, Direction::D => 0, }; let new_col = match new_dir { Direction::L => 49, Direction::R => 0, Direction::U => i, Direction::D => 49 - i, };
let new_pos = Coord { row: cube_row * 50 + new_row, col: cube_col * 50 + new_col, };
(new_pos, new_dir)}
Final code
pub fn part_2(input: &str) -> i32 { let (map, instructions) = parse(input); // go to the first open position on the top row (skip the Nones) let start_col = map[0].iter().position(|tile| *tile == Tile::Open).unwrap() as i32;
let mut pos = Coord { row: 0, col: start_col, }; let mut dir = Direction::R;
for inst in &instructions { match inst { Instruction::Rotate(turn) => dir = dir.turn(turn), Instruction::Forward(amount) => { // take a step "amount" times for _ in 0..*amount { let Coord { row: dr, col: dc } = dir.offset(); let new_tile = map .get((pos.row + dr) as usize) .and_then(|row| row.get((pos.col + dc) as usize)) .unwrap_or(&Tile::None);
match new_tile { // if new tile is solid, stop moving Tile::Solid => break, // if new tile is open, move there Tile::Open => { pos = Coord { row: pos.row + dr, col: pos.col + dc, }; } // if new tile is not found, wrap around Tile::None => { let (new_pos, new_dir) = wrap(&pos, &dir); // if the new_pos is solid, stop moving if map[new_pos.row as usize][new_pos.col as usize] == Tile::Solid { break; } // if the new_pos is open, move there pos = new_pos; dir = new_dir } } } } } }
1000 * (pos.row + 1) + 4 * (pos.col + 1) + dir.score() as i32}
Final code
#[derive(Clone)]struct Coord { row: i32, col: i32,}
enum Direction { L, R, U, D,}
enum Turn { L, R,}
#[derive(PartialEq)]enum Tile { Open, Solid, None,}
enum Instruction { Rotate(Turn), Forward(u8),}
impl Direction { fn score(&self) -> usize { use Direction::*; match self { R => 0, D => 1, L => 2, U => 3, } }
fn turn(self, turn: &Turn) -> Direction { use Direction::*; match (self, turn) { (L, Turn::L) => D, (L, Turn::R) => U, (R, Turn::L) => U, (R, Turn::R) => D, (U, Turn::L) => L, (U, Turn::R) => R, (D, Turn::L) => R, (D, Turn::R) => L, } }
fn offset(&self) -> Coord { use Direction::*; match &self { L => Coord { row: 0, col: -1 }, R => Coord { row: 0, col: 1 }, U => Coord { row: -1, col: 0 }, D => Coord { row: 1, col: 0 }, } }}
fn parse(input: &str) -> (Vec<Vec<Tile>>, Vec<Instruction>) { // do NOT remove starting whitespace, it's significant let (grid, moves) = input.trim_end().split_once("\n\n").unwrap(); let mut instructions = Vec::new(); let mut digits = Vec::new(); for c in moves.chars() { if c.is_numeric() { // accumulate digits let digit = c.to_digit(10).unwrap() as u8; digits.push(digit); } else { // construct number out of digits // uses math to concatenate digits instead of turning them into a string first and parsing the string let num = digits.iter().fold(0, |num, digit| num * 10 + digit); digits.clear(); instructions.push(Instruction::Forward(num));
// parse turn let turn = match c { 'L' => Turn::L, 'R' => Turn::R, _ => panic!("Invalid input"), }; instructions.push(Instruction::Rotate(turn)); } } // construct number out of any remaining digits // uses math to concatenate digits instead of turning them into a string first and parsing the string let num = digits.iter().fold(0, |num, digit| num * 10 + digit); instructions.push(Instruction::Forward(num));
let mut map = Vec::new(); for line in grid.lines() { let mut row = Vec::new(); for c in line.chars() { let tile = match c { '.' => Tile::Open, '#' => Tile::Solid, ' ' => Tile::None, _ => panic!("invalid input"), }; row.push(tile); } map.push(row); }
(map, instructions)}
fn wrap1(map: &[Vec<Tile>], pos: &Coord, dir: &Direction) -> Coord { let Coord { row: dr, col: dc } = dir.offset(); let mut curr = pos.clone(); // while an open or solid tile exists in the map when walking in the opposite direction, update pos while let Some(tile) = map .get((curr.row - dr) as usize) .and_then(|row| row.get((curr.col - dc) as usize)) { if *tile == Tile::None { break; } curr = Coord { row: curr.row - dr, col: curr.col - dc, }; }
curr}
pub fn part_1(input: &str) -> i32 { let (map, instructions) = parse(input); // go to the first open position on the top row (skip the Nones) let start_col = map[0].iter().position(|tile| *tile == Tile::Open).unwrap() as i32;
let mut pos = Coord { row: 0, col: start_col, }; let mut dir = Direction::R;
for inst in &instructions { match inst { Instruction::Rotate(turn) => dir = dir.turn(turn), Instruction::Forward(amount) => { // take a step "amount" times for _ in 0..*amount { let Coord { row: dr, col: dc } = dir.offset(); let new_tile = map .get((pos.row + dr) as usize) .and_then(|row| row.get((pos.col + dc) as usize)) .unwrap_or(&Tile::None);
match new_tile { // if new tile is solid, stop moving Tile::Solid => break, // if new tile is open, move there Tile::Open => { pos = Coord { row: pos.row + dr, col: pos.col + dc, }; } // if new tile is not found, wrap around Tile::None => { let new_pos = wrap1(&map, &pos, &dir); // if the new_pos is solid, stop moving if map[new_pos.row as usize][new_pos.col as usize] == Tile::Solid { break; } // if the new_pos is open, move there pos = new_pos; } } } } } }
1000 * (pos.row + 1) + 4 * (pos.col + 1) + dir.score() as i32}
fn wrap2(pos: &Coord, dir: &Direction) -> (Coord, Direction) { // find idxes of entire cube // this huge match statement only covers cases in the real input, but can be expanded to cover everything. It's just tedious let (cube_row, cube_col, new_dir) = match (pos.row / 50, pos.col / 50, dir) { (0, 1, Direction::U) => (3, 0, Direction::R), (0, 1, Direction::L) => (2, 0, Direction::R), (0, 2, Direction::U) => (3, 0, Direction::U), (0, 2, Direction::R) => (2, 1, Direction::L), (0, 2, Direction::D) => (1, 1, Direction::L), (1, 1, Direction::R) => (0, 2, Direction::U), (1, 1, Direction::L) => (2, 0, Direction::D), (2, 0, Direction::U) => (1, 1, Direction::R), (2, 0, Direction::L) => (0, 1, Direction::R), (2, 1, Direction::R) => (0, 2, Direction::L), (2, 1, Direction::D) => (3, 0, Direction::L), (3, 0, Direction::R) => (2, 1, Direction::U), (3, 0, Direction::D) => (0, 2, Direction::D), (3, 0, Direction::L) => (0, 1, Direction::D), _ => unreachable!(), }; // find idxes within the cube let (row_idx, col_idx) = (pos.row % 50, pos.col % 50);
let i = match dir { Direction::L => 49 - row_idx, Direction::R => row_idx, Direction::U => col_idx, Direction::D => 49 - col_idx, };
// find new idxes within the cube let new_row = match new_dir { Direction::L => 49 - i, Direction::R => i, Direction::U => 49, Direction::D => 0, }; let new_col = match new_dir { Direction::L => 49, Direction::R => 0, Direction::U => i, Direction::D => 49 - i, };
let new_pos = Coord { row: cube_row * 50 + new_row, col: cube_col * 50 + new_col, };
(new_pos, new_dir)}
pub fn part_2(input: &str) -> i32 { let (map, instructions) = parse(input); // go to the first open position on the top row (skip the Nones) let start_col = map[0].iter().position(|tile| *tile == Tile::Open).unwrap() as i32;
let mut pos = Coord { row: 0, col: start_col, }; let mut dir = Direction::R;
for inst in &instructions { match inst { Instruction::Rotate(turn) => dir = dir.turn(turn), Instruction::Forward(amount) => { // take a step "amount" times for _ in 0..*amount { let Coord { row: dr, col: dc } = dir.offset(); let new_tile = map .get((pos.row + dr) as usize) .and_then(|row| row.get((pos.col + dc) as usize)) .unwrap_or(&Tile::None);
match new_tile { // if new tile is solid, stop moving Tile::Solid => break, // if new tile is open, move there Tile::Open => { pos = Coord { row: pos.row + dr, col: pos.col + dc, }; } // if new tile is not found, wrap around Tile::None => { let (new_pos, new_dir) = wrap2(&pos, &dir); // if the new_pos is solid, stop moving if map[new_pos.row as usize][new_pos.col as usize] == Tile::Solid { break; } // if the new_pos is open, move there pos = new_pos; dir = new_dir } } } } } }
1000 * (pos.row + 1) + 4 * (pos.col + 1) + dir.score() as i32}